library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bad_Blankenburg <- sunrise.set(50.68522937657268,11.265192031860352, "2025/01/01", timezone="MET", num.days=370) sunrise <- Bad_Blankenburg$sunrise sunset <- Bad_Blankenburg$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bad_Blankenburg["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bad_Blankenburg["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bad_Blankenburg["timestamp"] <- align.time(Bad_Blankenburg$sunrise, 60*10) Bad_Blankenburg <- Bad_Blankenburg[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bad_Blankenburg, aes(x=Bad_Blankenburg$timestamp)) + geom_line(aes(y=Bad_Blankenburg$sr)) + geom_line(aes(y=Bad_Blankenburg$ss)) + labs(title = " Sunrise/Sunset - Bad_Blankenburg 2025", x = "Date", y = "Time") pdf("Bad_Blankenburg_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bad_Blankenburg_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bad_Blankenburg["Sunrise"] <- strftime(Bad_Blankenburg$sr, format="%H:%M") Bad_Blankenburg["Sunset"] <- strftime(Bad_Blankenburg$ss, format="%H:%M") write.table(Bad_Blankenburg, file="Bad_Blankenburg_SaSu.csv", dec=',', sep=';', row.names=FALSE)